Titanium + gold = new gold standard for artificial joints

David Ruth
713-348-6327
david@rice.edu

Jade Boyd
713-348-6778
jadeboyd@rice.edu

Titanium + gold = new gold standard for artificial joints

Rice lab discovers titanium-gold alloy that is four times harder than most steels

HOUSTON — (July 20, 2016) — Titanium is the leading material for artificial knee and hip joints because it’s strong, wear-resistant and nontoxic, but an unexpected discovery by Rice University physicists shows that the gold standard for artificial joints can be improved with the addition of some actual gold.

Crystal structure of beta titanium-3 gold

Crystal structure of beta titanium-3 gold

“It is about 3-4 times harder than most steels,” said Emilia Morosan, the lead scientist on a new study in Science Advances that describes the properties of a 3-to-1 mixture of titanium and gold with a specific atomic structure that imparts hardness. “It’s four times harder than pure titanium, which is what’s currently being used in most dental implants and replacement joints.”

Morosan, a physicist who specializes in the design and synthesis of compounds with exotic electronic and magnetic properties, said the new study is “a first for me in a number of ways. This compound is not difficult to make, and it’s not a new material.”

In fact, the atomic structure of the material — its atoms are tightly packed in a “cubic” crystalline structure that’s often associated with hardness — was previously known. It’s not even clear that Morosan and former graduate student Eteri Svanidze, the study’s lead co-author, were the first to make a pure sample of the ultrahard “beta” form of the compound. But due to a couple of lucky breaks, they and their co-authors are the first to document the material’s remarkable properties.

Emilia Morosan and Eteri Svanidze

Emilia Morosan (left) and Eteri Svanidze (Photo by Jeff Fitlow/Rice University)

“This began from my core research,” said Morosan, professor of physics and astronomy, of chemistry and of materials science and nanoengineering at Rice. “We published a study not long ago on titanium-gold, a 1-to-1 ratio compound that was a magnetic material made from nonmagnetic elements. One of the things that we do when we make a new compound is try to grind it into powder for X-ray purposes. This helps with identifying the composition, the purity, the crystal structure and other structural properties.

“When we tried to grind up titanium-gold, we couldn’t,” she recalled. “I even bought a diamond (coated) mortar and pestle, and we still couldn’t grind it up.”

Morosan and Svanidze decided to do follow-up tests to determine exactly how hard the compound was, and while they were at it, they also decided to measure the hardness of the other compositions of titanium and gold that they had used as comparisons in the original study.

Eteri Svanidze and Emilia Morosan

Eteri Svanidze (left) and Emilia Morosan (Photo by Jeff Fitlow/Rice University)

One of the extra compounds was a mixture of three parts titanium and one part gold that had been prepared at high temperature.

What the team didn’t know at the time was that making titanium-3-gold at relatively high temperature produces an almost pure crystalline form of the beta version of the alloy — the crystal structure that’s four times harder than titanium. At lower temperatures, the atoms tend to arrange in another cubic structure — the alpha form of titanium-3-gold. The alpha structure is about as hard as regular titanium. It appears that labs that had previously measured the hardness of titanium-3-gold had measured samples that largely consisted of the alpha arrangement of atoms.

The team measured the hardness of the beta form of the crystal in conjunction with colleagues at Texas A&M University’s Turbomachinery Laboratory and at the National High Magnetic Field Laboratory at Florida State University, Morosan and Svanidze also performed other comparisons with titanium. For biomedical implants, for example, two key measures are biocompatibility and wear resistance. Because titanium and gold by themselves are among the most biocompatible metals and are often used in medical implants, the team believed titanium-3-gold would be comparable. In fact, tests by colleagues at the University of Texas MD Anderson Cancer Center in Houston determined that the new alloy was even more biocompatible than pure titanium. The story proved much the same for wear resistance: Titanium-3-gold also outperformed pure titanium.

Morosan said she has no plans to become a materials scientist or dramatically alter her lab’s focus, but she said her group is planning to conduct follow-up tests to further investigate the crystal structure of beta titanium-3-gold and to see if chemical dopants might improve its hardness even further.

Additional co-authors include Pulickel Ajayan, Sruthi Radhakrishnan and Chandra Sekhar Tiwary, all of Rice; Tiglet Besara, Yan Xin, Ke Han and Theo Siegrist, all of Florida State; Fevzi Ozaydin and Hong Liang, both of Texas A&M; and Sendurai Mani of MD Anderson. The research was supported by the National Science Foundation, the Department of Energy, Texas A&M’s Turbomachinery Laboratory and the Florida State University Research Foundation.

-30-

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2016/07/TiAu_rotation_smaller-2koly18.gif
CAPTION: Crystal structure of beta titanium-3 gold. (Image courtesy of E. Morosan/Rice University)

http://news.rice.edu/files/2016/07/0720_HARD-EMetES-lg-1ko3u4n.jpg
CAPTION: Emilia Morosan (left) and Eteri Svanidze. (Photo by Jeff Fitlow/Rice University)

http://news.rice.edu/files/2016/07/0720_HARD-mic-lg-26v0jh2.jpg
CAPTION: Eteri Svanidze (left) and Emilia Morosan. (Photo by Jeff Fitlow/Rice University)

The DOI of the Science Advances paper is:
10.1126/sciadv.1600319

A copy of the paper is available at:
http://advances.sciencemag.org/content/2/7/e1600319

More information about Morosan’s lab is available at:
http://www.morosan.rice.edu/

Related research from Rice:

Unlikely couple discovers mutual attraction — July 13, 2015
http://news.rice.edu/2015/07/13/unlikely-couple-discovers-mutual-attraction/

Moore quantum materials: Recipe for serendipity — Aug. 12, 2014
http://news.rice.edu/2014/08/12/moore-quantum-materials-recipe-for-serendipity/

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.

 

About Jade Boyd

Jade Boyd is science editor and associate director of news and media relations in Rice University's Office of Public Affairs.