Metal simplifies synthesis of antibody drugs

Editor’s note: Links to high-resolution images for download appear at the end of this release.

Jeff Falk
713-348-6775
jfalk@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Metal simplifies synthesis of antibody drugs

Rice University scientists develop ‘universal cassette’ to ease cancer drug design

HOUSTON – (Aug. 24, 2017) – Rice University scientists have developed a method to efficiently modify natural antibodies that can deliver drugs to target cells. Adding a little extra metal is the key.

Rice chemist Zachary Ball and graduate student and lead author Jun Ohata discovered that rhodium, a rare transition metal, can be a useful element in the design and preparation of antibody drug conjugates (treatments) that have become a standard tool for targeted delivery of drugs such as chemotherapeutics.

Rice University chemists have designed a plug-in metalloprotein to simplify the task of making targeted antibody therapies. The researchers used a triple-metalated peptide (inset) to give a specific function to antibodies (purple) with a therapeutic warhead. The modified antibodies selectively targeted the surface of breast cancer cells in the lab (image).

Rice University chemists have designed a plug-in metalloprotein to simplify the task of making targeted antibody therapies. The researchers used a triple-metalated peptide (inset) to give a specific function to antibodies (purple) with a therapeutic warhead. The modified antibodies selectively targeted the surface of breast cancer cells in the lab (image). Illustration by the Ball Research Group

They developed a unique multimetallic protein that acts like an enzyme to catalyze the action of a wide variety of antibodies. The simple process will allow labs to test the relative function of a variety of antibody sources and antigen targets to see which will work best on a tumor cell.

The research appears in the Journal of the American Chemical Society.

The key to Ball and Ohata’s design is having three rhodium complexes attached to specific sites of a protein that binds to the constant (Fc) antibody region. Once bound, this multimetallic peptide catalyzes site-specific attachment of therapeutic agents with minimal disruption to the antibody itself.  The lab tested its complexes on breast cancer cells and confirmed that the modified antibodies retained their antigen-binding properties.

Zachary Ball, left, and Jun Ohata.

Zachary Ball, left, and Jun Ohata. Photo by Jeff Fitlow

“The beauty of this catalyst is that it binds to the constant region of the antibody, so it should be broadly general for all human antibodies,” said Ball, an associate professor of chemistry and director of Rice’s Institute of Biosciences and Bioengineering. “We have a single, universal cassette system that plugs into antibodies to make drug conjugates fairly quickly and easily.”

The technique is meant to simplify what has been a complicated path to antibody drug conjugates. “To do selective chemistry on natural antibodies without first engineering their sequences has been an unsolved problem,” Ball said. “Purely random conjugation can be valuable, but it’s hard to understand structure-activity relationships when you don’t have a single structure; you get an ensemble of molecules with an ensemble of properties.” He said homogeneous conjugates are more desirable from a regulatory perspective as well.

His lab has extensive experience with the interplay of proteins and transition metals, a group of elements in the center of the periodic table, including rhodium, with diverse chemical reactivity.

The rhodium complexes in Ball and Ohata’s metalloprotein play multiple roles. “At least one of the rhodium complexes binds to and helps orient the system properly, and a second one does the bond-forming chemistry,” Ball said.

Rice University graduate student Jun Ohata transfers a sample of a multimetallic protein. The plug-in protein is designed to simplify the task of making targeted antibody therapies.

Rice graduate student Jun Ohata transfers a sample of a multimetallic protein. Photo by Jeff Fitlow

“It’s just a fascinating chemical problem,” he said. “We’ve solved a lot of small-molecule selectivity problems, but when chemists move to bigger and bigger systems, the traditional approaches aren’t sufficient.”

“Our studies in the past have focused on doing the chemistry to put something onto proteins, but here we had to use the produced proteins in further biological studies, which we had never attempted to do before,” Ohata said. “It took me almost two years to finish these biology-related experiments.”

“We think of this as the frontier of chemical selectivity,” Ball said. “We’ve got this massive molecule that weighs 150,000 kilodaltons. How do we find one hydroxyl group in that massive structure and do chemistry on it? These are the kind of fundamental things that chemists love to think about.”

Ball’s lab is beginning to work with Texas Medical Center collaborators to test the new catalyst. “We want to get these in the hands of clinicians and drug development people to see what these conjugates can do,” he said.

The National Science Foundation and the Robert A. Welch Foundation supported the research.

-30-

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/jacs.7b06428

DOI: 10.1021/jacs.7b06428

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Ball Research Group: http://www.ztb.rice.edu/index.html

Wiess School of Natural Sciences: http://natsci.rice.edu

Images for download:

Rice University chemists have designed a plug-in metalloprotein to simplify the task of making targeted antibody therapies. The researchers used a triple-metalated peptide (inset) to give a specific function to antibodies (purple) with a therapeutic warhead. The modified antibodies selectively targeted the surface of breast cancer cells in the lab (image).

 

 

 

 

http://news.rice.edu/files/2017/08/0828_BALL-1-WEB-2mev7gs.jpg

Rice University chemists have designed a plug-in metalloprotein to simplify the task of making targeted antibody therapies. The researchers used a triple-metalated peptide (inset) to give a specific function to antibodies (purple) with a therapeutic warhead. The modified antibodies selectively targeted the surface of breast cancer cells in the lab (image). (Credit: Illustration by the Ball Research Group/Rice University)

Rice University graduate student Jun Ohata transfers a sample of a multimetallic protein. The plug-in protein is designed to simplify the task of making targeted antibody therapies.

 

 

 

 

http://news.rice.edu/files/2017/08/0828_BALL-2-WEB-270gya4.jpg

Rice University graduate student Jun Ohata transfers a sample of a multimetallic protein. The plug-in protein is designed to simplify the task of making targeted antibody therapies. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.

About Mike Williams

Mike Williams is a senior media relations specialist in Rice University's Office of Public Affairs.