Sharp meets flat in tunable 2D material

Rice’s new atom-flat compounds show promise for optoelectronics, advanced computing

A Rice University lab wants its products to look sharp, even at the nanoscale. Its latest creation is right on target.

The Rice lab of materials scientist Pulickel Ajayan has created unique two-dimensional flakes with two distinct personalities: molybdenum diselenide on one side of a sharp divide with rhenium diselenide on the other.

From all appearances, the two-toned material likes it that way, growing naturally — though under tight conditions — in a chemical vapor deposition furnace.

Adjacent crystal structures of rhenium diselenide (top) and molybdenum diselenide form a 2D transition metal dichalcogenide heterostructure with sharply separated domains. The unique material created at Rice University shows promise for optoelectronic applications. (Credit: Center for Nanophase Materials Science/Ajayan Research Group)

Adjacent crystal structures of rhenium diselenide (top) and molybdenum diselenide form a 2D transition metal dichalcogenide heterostructure with sharply separated domains. The unique material created at Rice University shows promise for optoelectronic applications. Courtesy of the Center for Nanophase Materials Science and the Ajayan Research Group

The material is a 2D transition metal dichalcogenide heterostructure, a crystal with more than one chemical component. That’s not unusual in itself, but the sharp zigzag boundary between elements in the material reported in the American Chemical Society journal Nano Letters is unique.

Dichalcogenides are semiconductors that incorporate transition metals and chalcogens. They’re a promising component for optoelectronic applications like solar cells, photodetectors and sensing devices. Lead author Amey Apte, a Rice graduate student, said they may also be suitable materials for quantum computing or neuromorphic computing, which emulates the structure of the human brain.

Apte said well-known, atomically flat molybdenum-tungsten dichalcogenide heterostructures can be more alloy-like, with diffuse boundaries between their crystal domains. However, the new material — technically, 2H MoSe2-1T’ ReSe2 — has atomically sharp interfaces that gives it a smaller electronic band gap than other dichalcogenides.

“Instead of having one unique band gap based on the composition of an alloy, we can tune the band gap in this material in a very controllable way,” Apte said. “The strong dissimilarity between two adjacent atomically thin domains opens up new avenues.” He said the range of voltages likely spans from 1.5 to 2.5 electron volts.

An illustration shows several arrangements of rhenium diselenide and molybdenum diselenide, which form a razor-sharp junction where they meet in a new transition metal dichalcogenide created at Rice University. The material is scalable and its band gap tunable for optoelectronics. (Credit: Ajayan Research Group/Rice University)

An illustration shows several arrangements of rhenium diselenide and molybdenum diselenide, which form a razor-sharp junction where they meet in a new transition metal dichalcogenide created at Rice University. Click on the image for a larger version. Courtesy of the Ajayan Research Group

Growing the materials reliably involved the creation of a phase diagram that laid out how each parameter — the balance of chemical gas precursor, the temperature and the time — affects the process. Rice graduate student and co-author Sandhya Susarla said the diagram serves as a road map for manufacturers.

“The biggest issue in these 2D materials has been that they’re not very reproducible,” she said. “They’re very sensitive to a lot of parameters, because the process is kinetically controlled.

“But our process is scalable because it’s thermodynamically controlled,” Susarla said. “Manufacturers don’t have a lot of parameters to look at. They just have to look at the phase diagram, control the composition and they will get the product every time.”

The researchers think they can gain further control of the material’s form by tailoring the substrate for epitaxial growth. Having the atoms fall into place in accordance with the surface’s own atomic arrangement would allow for far more customization.

Co-authors of the paper are Rice graduate student Lucas Sassi; former postdoctoral researcher Jongwon Yoon, now a senior researcher at the Korea Basic Science Institute; Palash Bharadwaj, the Texas Instruments Assistant Professor of Electrical and Computer Engineering; alumnus Chandra Sekhar Tiwary, now an assistant professor at the Indian Institute of Technology, Kharagpur; and James Tour, the T.T. and W.F. Chao Chair in Chemistry, a professor of computer science and of materials science and nanoengineering; Aravind Krishnamoorthy, Rajiv Kalia, Aiichiro Nakano and Priya Vashishta of the University of Southern California and Jordan Hachtel and Juan Carlos Idrobo of Oak Ridge National Laboratory.

Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Department of Energy, Office of Science, Basic Energy Sciences and the Air Force Office of Scientific Research supported the research.

About Mike Williams

Mike Williams is a senior media relations specialist in Rice University's Office of Public Affairs.